If it's not what You are looking for type in the equation solver your own equation and let us solve it.
28n^2+184n+96=n
We move all terms to the left:
28n^2+184n+96-(n)=0
We add all the numbers together, and all the variables
28n^2+183n+96=0
a = 28; b = 183; c = +96;
Δ = b2-4ac
Δ = 1832-4·28·96
Δ = 22737
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(183)-\sqrt{22737}}{2*28}=\frac{-183-\sqrt{22737}}{56} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(183)+\sqrt{22737}}{2*28}=\frac{-183+\sqrt{22737}}{56} $
| x3/5=10/9 | | 4z=2z+16 | | 1+2x-7+4x=x-9+19-3x | | 3(y-1)=6y-9 | | 5m/2-12=m/3=1 | | x/3/5=10/4 | | 50+60=40k+70 | | 6-d=13 | | 2w-27=11w | | 3/3=3r | | 8n+5=25 | | 12k-6=k+16 | | Y=3x^2-54x+13 | | -24=3x-3+6 | | 10+3x=-10-7x | | 12-5x=30-8x | | 1/5x-17=38 | | 84=6(8+2n) | | n-2.2+4.9n=5.3 | | -6+4b=-18 | | -8y+16=4(4y-4)-4(8y-16) | | 2x+2÷5=4 | | 5x+52=9x-16 | | x*(x*0.1)=20000 | | -6+4b=-13 | | -2x=-9-3x | | 25=-4.9x^2+30x+4 | | -6n+10+8n=26 | | 25=-4.9x+30x+4 | | 8(2x-9)+4(1x=+4) | | -3x+1=2(4x-5 | | x/2+4=32 |